Superconductivity in Infinite Layer Nickelates

Lin Er Chow, ¹ K. Y. Yip, ² M. Pierre, ³ S. W. Zeng, ¹ Z. T. Zhang, ¹ T. Heil, ⁴ J. Deuschle, ⁴ P. Nandi, ¹ S. K. Sudheesh, ¹ Z. S. Lim, ¹ Z. Y. Luo, ¹ M. Nardone, ³ A. Zitouni, ³ Peter A. van Aken, ⁴ Elbert E.M. Chia, ⁵ M. Goiran, ³ S. K. Goh, ² W. Escoffier, ³ A. Ariando ¹ *

¹Department of Physics, Faculty of Science, National University of Singapore, Singapore 117551, Singapore

²Department of Physics, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China

³LNCMI, Université de Toulouse, CNRS, INSA, UPS, EMFL, 31400 Toulouse, France

⁴Max Planck Institute for Solid State Research, 70569 Stuttgart, Germany

⁵Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang

Technological University, 21 Nanyang Link, Singapore 637371, Singapore

Email: ariando@nus.edu.sg

The discovery of high-temperature (high-Tc) superconductivity in cuprate four decades ago motivates intense theoretical and experimental efforts to pursue and understand the phenomenon. One of the ideal routes is through a cuprate analogue which mimics the electronic and structural templates of the high-Tc cuprate. Standing beside copper in the periodic table, Ni¹⁺ in infinite-layer phase hosts 3d⁹ electronic structure with lifted orbital degeneracy resembles Cu²⁺ state in the cuprate superconductors. Despite more than two decades of theoretical predictions, superconducting infinite-layer nickelate was only successfully synthesized in 2019 in thin film form. Since then, considerable advancements in both theoretical and experimental studies of this newfound long-promise nickelate superconductor have been made. Following the two decades theoretical debates, the recent experimental data suggest both significant similarities and distinctions to the high-Tc cuprate. We will discuss these aspects along with our recent magnetotransport data measured in magnetic fields up to 55 T and at temperature down to 30 mK that shows rare-earth specific Pauli-limit violation in all crystallographic directions, which suggests a richer superconducting landscape in the newfound nickelate beyond a cuprate-like image.