Mechanical and electronic properties of Al₃Zr from first-principles calculations

Y. Okuda¹ and N. Nunomura^{2*}

¹School of Sustanable Design, University of Toyama, Toyama, Japan; ²Department of Materials Design and Engineering, University of Toyama, Toyama, Japan; nori2@sus.u-toyama.ac.jp

Zr is used as a minor additive metal in Al alloys, and Al₃Zr formed by adding Zr to Al has L1₂ and D0₂₃ type crystal structures. Currently, there have been many studies on the recrystallization of these structures. However, comparisons based on theoretical calculations, including mechanical and thermodynamic properties and electronic structure, have not been performed well. In this study, we perform first-principles calculations on the mechanical and thermodynamic properties and electronic structure of Al₃Zr to compare the L1₂ and D0₂₃ structures of Al₃Zr on a more microscopic scale. Table 1 shows the elastic moduli and Poisson's ratios of the L1₂ and D0₂₃ structures of Al₃Zr. It can be seen that, compared to the L1₂ structure, the shear modulus and Young's modulus of the D0₂₃ structure increase, while Poisson's ratio decreases, indicating that the D0₂₃ structure is less ductile although its strength increases. Figure 1 shows the electronic density of states for the L1₂ and D0₂₃ structures. Compared with the L1₂ structure, the D0₂₃ structure has the Fermi energy at the center of the pseudogap. The larger this gap is, the higher the bond strength and the higher the deformation resistance, indicating that the D0₂₃ structure exhibits more covalent bonding than the L1₂ structure.

	В	G	E	ν
L1 ₂	103.47	67.11	165.53	0.233
D0 ₂₃	103.40	85.67	201.39	0.175
	(a) L1 ₂ Al ₁ Zr-Total (ZTV)A9 2 (ZTV)A9		(b) DO_{23} Adj Zr -Total Zr- Zr -	

Table 1 The calculated elastic moduli (GPa), and Poisson' ratios of L12 and D023 structures

Fig. 1. Total and partial density of states for $L1_2$ and $D0_{23}$ structures. The vertial dotted lines indicate the Fermi level.