
Modulation of Fischer-Tropsch Product Selectivity via Various Substrates Supported Rhodium Nanoclusters - A DFT Study

<u>Meng-Chi Hsieh¹</u>, Yun-An Kuo¹, Yung-Yi Huang¹, Yu-Wen Chuang¹, and Chun-Chih Chang¹,*

¹ Department of Chemical and Materials Engineering, Chinese Culture University, Taipei, Taiwan zjz8@ulive.pccu.edu.tw

Fischer-Tropsch Synthesis (FTS) converts CO and H₂ into hydrocarbons, offering a viable solution to 21^{st} -century energy challenges. While Rh nanoclusters effectively catalyze FTS, their activity varies significantly depending on support interactions. This study employs density functional theory (DFT) to investigate Rh₄ nanocluster stability on graphene, ZSM-5, and MCM-41. The examination insights the reaction mechanisms of *CH_x formation. We systematically analyze the selectivity of hydrogen-assisted *CH_xO (x = 1, 2, 3) dissociation across these supported systems. It is concluded that the modulation of Rh₄ nanocluster activity through strategic support selection, optimizing energy barriers to develop highly selective FTS catalysts.

References

- 1. Peregudova, A. S.; Barrios, A. J.; Ordomsky, V. V.; Borisova, N. E.; Khodakov, A. Y. *Chem. Commun.* **2020**, *56*, 277–280.
- 2. Katzer, J. R.; Sleight, A. W.; Gajardo, P.; Michel, J. B.; Gleason, E. F.; McMillan, S. *Faraday Discuss. Chem. Soc.* **1981**, 72, 121-133.