Defect calculation of ZnM_2O_4 (M = Rh, Ir) spinel corrected by FERE correction using meta-GGA-SCAN

A. Fujii¹, H.Raebiger¹

^{1,2}Department of Physics and Engineering, Yokohama National University, Yokohama, Japan, Laboratory for Materials and Structures ¹fujii-akio-fk@ynu.jp ²hannes@ynu.ac.jp

 ${}^{1}ZnRh_{2}O_{4}$ is a material expected to be used as a p-type transparent semiconductor. There are far fewer types of p-type transparent semiconductors than n-type transparent semiconductors, and it has been difficult to form p-n junctions to create a variety of semiconductor functions.

Therefore, to confirm whether $ZnRh_2O_4$, which is expected to be a transparent oxide semiconductor that tends to

Fig. 1 Calculated formation energy diagram of various defects added to ZnRh₂O₄ with FERE correction

become p-type, is practical, we decided to use SCAN, a relatively new method for defect calculation. Furthermore, to predict the formation energy more accurately, we applied ²Fitted Elemental-phase Reference Energies (FERE) correction, which corrects the formation energy error between metals and nonmetals that potentially appears in DFT calculations.

Figure 1 is a defect formation energy diagram in an O-rich, Rh-poor environment drawn by ³pydefect, which supports point defect calculation, with FERE correction applied.

References

- 1. O. Volnianska and P. Boguslawski, J. Appl. Phys, 2013, 47, 033711
- 2. V. Stevanović et al., Phys. Rev. B, 2012, 85, 115104
- 3. Y. Kumagai, PYDEFECT(2021), https://github.com/kumagai-group/pydefect.