Metal-doped C₃N monolayer for H₂O, CO₂, C₂H₄, and C6-aldehyde Adsorption: A DFT Investigation

Watcharin Teeranattapong,¹ Audomsak Sripothongnack,¹ and Pakpoom Reunchan*¹

¹ Department of Physics, Faculty of Science, Kasetsart University, Bangkok, Thailand pakpoom.r@ku.ac.th

Developing gas sensors for modern agriculture is crucial for detecting molecules and chemical signals in plants that indicate plant stress, negatively impacting their growth.^{1,2} Nowadays, two-dimensional materials are increasing due to their high surface-tovolume ratio, which enhances gas adsorption, and their tunable electronic properties that can improve sensing performance in gas-sensing devices.³ In this study, we utilized density functional theory (DFT) to investigate the adsorption and gas-sensing mechanisms of C₃N monolayers for gases (H₂O, CO₂, C₂H₄, and C6-aldehyde) on both pristine C₃N and C₃N doped with metals (Al, Mg, and Na). The results showed that all metal atoms strongly bonded to the C₃N surface, with Al-doped C₃N showing the highest interaction with CO₂, C₂H₄, and C6-aldehyde molecules gas. Mg-doped C₃N demonstrated moderate interactions, particularly with H₂O molecules. Conversely, Nadoped C₃N showed the weakest interactions. Bader charge analysis indicated that molecules gas act as electron donors or acceptors from the C₃N surface, except in the case of Na-doped C₃N, where molecules gas act as electron donors. The recovery time calculations demonstrated that metal doping significantly improved the gas-sensing performance compared to pristine C₃N, particularly for H₂O, CO₂, and C₂H₄ in the Aldoped C₃N system. Our study proposes an effective strategy to enhance the adsorption and gas-sensing mechanisms of C₃N and the gas-sensing properties of C₃N, making it suitable for modern agricultural applications where detecting plant stress-related gases is essential for monitoring crop health and growth.

References

1. Tuteja, N.; Sopory, S. K. Chemical signaling under abiotic stress environment in plants. Plant Signaling & Behavior, **2008**, 3 (8), 525-536.

2. Coatsworth, P.; Gonzalez-Macia, L.; Collins, A. S. P.; Bozkurt, T.; Güder, F. Continuous monitoring of chemical signals in plants under stress. Nature Reviews Chemistry, **2023**, 7 (1), 7-25.

3. Ma, D.; Zhang, J.; Li, X.; He, C.; Lu, Z.; Lu, Z.; Yang, Z.; Wang, Y. C₃N monolayers as promising candidates for NO₂ sensors. Sensors and Actuators B: Chemical, **2018**, 266, 664-673.