Interplay of spin-orbit coupling and altermagnetism in twodimensional altermagnets

<u>Marko Milivojević</u>*,^{1,2} Marko Orozović,³ Timon Moško,⁴ Silvia Picozzi,⁵ Martin Gmitra,^{4,6} and Srdjan Stavrić³

¹ Institute of Informatics, Slovak Academy of Sciences, Bratislava, Slovakia; ²Faculty of Physics, University of Belgrade, Belgrade, Serbia; ³Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia; ⁴Institute of Physics, Pavol Jozef Šafárik University in Košice, Košice, Slovakia; ⁵Department of Materials Science, University Milan-Bicocca, Milan, Italy; ⁶Institute of Experimental Physics, Slovak Academy of Sciences, Košice, Slovakia; marko.milivojevic@savba.sk

Receiving increasing interest in the field of spintronics are a type of magnets known as altermagnets^{1,2}, which exhibit zero net magnetization and feature spin-split electronic bands. Using the combination of the density functional theory and symmetry analysis we show that RuF₄ monolayer is a two-dimensional d-wave altermagnet³. Furthermore, we show that spin-orbit coupling has a pronounced effect on the splitting of the electronic bands of RuF₄, giving rise to pronounced spin splitting of the electronic bands at the Γ point by ~100 meV and turning this material into a weak ferromagnet. We explain the appearance of weak ferromagnetism and the spin splitting at the Γ point using the group theory and extend our analysis to other two-dimensional altermagnets (VF₄ and OsF₄) recently discovered^{4,5}. Finally, we argue that the canted weak ferromagnetism in two-dimensional altermagnets gives rise to the Rashba-Edelstein effect which could be easily detected in charge-spin conversion experiments⁶.

References

- 1. Yuan, L. D.; Wang, Z.; Luo, J.-W.; Rashba, E. I.; Zunger, A. *Physical Review B*, **2020**, 102, 014422.
- 2. Šmejkal, L.; Sinova, J.; Jungwirth, T. Physical Review X, 2022, 12, 031042.
- Milivojević, M.; Orozović, M.; Picozzi, S.; Gmitra, M.; Stavrić, S. 2D Materials, 2024, 11, 035025.
- 4. Sødequist, J.; Olsen, T. Applied Physics Letters, 2024, 124, 182409.
- 5. Orozović, M.; Moško, T.; Milivojević, M.; Gmitra, M.; Stavrić, S. in preparation.
- Ghiasi, T. S.; Kaverzin, A. A.; Blah, P. J.; van Wees, B. J. Nano Letters, 2019, 19, 5959–5966.