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The first-principles GW method [1], in which the three-point vertex function (Γ) is 
approximated as unity, is a powerful tool for simulating single-electron excitations, 
including band gaps in extended systems and ionization energies and electron affinities 
in isolated systems. However, recent systematic investigations have revealed that the 
standard one-shot GW (or G0W0) method can produce significant errors up to several 
electron volts in core-electron binding energies (BEs). These errors can be substantially 
reduced by selecting appropriate DFT functionals, such as PBEh (𝛼 = 0.45), in the one-
shot approach or by incorporating (partial) self-consistency, even within the GW 
approximation (Γ = 1) [2,3]. 
   To address these limitations, we developed a first-principles GWG method that 
inherently extends beyond the conventional GW by incorporating the first-order three-
point vertex function (Γ = 1 + 𝑖𝐺𝑊𝑊) and implemented it into our all-electron mixed 
basis program [4]. The G terms are given as 

 
For simplicity, we used the bare Coulomb interaction (𝑣) instead of the dynamically 
screened Coulomb interaction (𝑊). First, we applied the GWG method to simulate the 
B1s, C1s, N1s, O1s, and F1s BEs for 19 small-sized molecules and compared the resulting 
GWG quasiparticle energies (with negative sign) to the available experimental BEs [5]. 
Second, we applied this method to simulate the first ionization energies of 96 atoms and 
molecules and evaluated its computational accuracy by comparing the results with 
experimental values. In addition, we discuss self-interaction corrections in detail in the 
GWG method [6].  
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The self-interaction between G and W in the GW one-electron self-energy operator can be

removed considering a SSC polarization function given by
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The SSC GW one-electron self-energy operator can be constructed by simply replacing

W (ω′) in Eq. (2) by W SSC
m (ω′), where W SSC

m (ω′) is the SSC dynamical screened Coulomb

interaction as W SSC
m (ω′) = (1 − vP SSC

m (ω′))−1v. Then, the GW quasiparticle energies are

given as

ESSC−GW

n = ELDA
n + < n|Σx + ΣSSC−GW − µxc|n > (6)

where Σx is the Fock-exchange term and µxc is the LDA exchange-correlation potential.

We discussed “bare” GW quasiparticle energies in this study instead of the “renormalized”

GW quasiparticle energies, for simplicity (note that, here, “bare” means the renormalized

Z-factor, defined as Zn = (1 − ∂Σ(ELDA
n )/∂ELDA

n )−1, is set to be unity). The difference

between the errors of the “bare” and “renormalized” GW is not significant for the IPs (see

Supplemental Material).

B. Self-Interaction Corrected GWΓ

In previous paper32, we developed the GWΓ method by including the second-order ex-

change term as follows:
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where we used the bare Coulomb interaction (v) instead of the dynamically screened

Coulomb interaction (W ) in the first-order three-point vertex function (Γ ∼ 1 + iGGW ).

Both term in ΣΓ includes the self-interaction contributions for ν = µ,

< n|ΣS−occ(En)|n > =
emp
∑

λ

occ
∑

ν

vn,λ;ν,νvν,ν;λ,n
En + Eλ −Eν −Eν − iη

(8)

5


