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Recently, First-principles calculations have been used not only in materials science but

also in industrial researches, and has become very popular. However, there is a question

whether the calculations are correctly performed to be compared with experiments and

to design or predict new materials on the basis of the correct understanding of the basic

theories behind the complicated calculation algorithms. Although the basic equation, i.e.,

quantum mechanical Schrödinger equaion or Dirac equation for the component particles

of electrons and nuclei is known, and nuclei may be treated approximately as classical

particles with point charge, it is impossible to treat the system exactly except for the

simplest system of an isolated hydrogen atom. Within the limited resource of the compu-

tational power, even if we use huge supercomputer, somewhat crude approximation must

be made in the first-principles calculation. Therefore, it is required for us computational

materials scientists to clarify what we can do and what we cannot do, and to develop a

new program as accurate as possible and to show the way to apply it appropriately.

The Hartree-Fock approximation is an accurate approximation in a sense that it cor-

rectly includes exchange interaction between electrons, satisfies virial theorem, the Pauli

principle, and the conservation lows. However, the interactions which is not included in

the Hartree-Fock approximation are called electron correlations are generally not neg-

ligible at all, and sometimes become quite important in various physical and chemical

phenomena and attract great interest of many researchers. The configuration interac-

tion (CI) method to incorporate the effect of electron correlations is accurate but its

application is limited to rather small systems only, because it requires vast amount of

computational resources if the system becomes large. Therefore, as a standard first-

principles method, one invokes density functional theory discovered by Hohenberg and

Kohn. In this theory, for nondegenerate ground state, the original equation for the 3N -

dimensional degrees of freedom for the N -electron system becomes a simple equation for

the 3-dimensional degrees of freedom. However, explicit form of an exchange-correlation

interaction applicable to general problems is not known, although first the local density

approximation (LDA) was introduced on the basis of electron-gas model by Kohn and

Sham, and then it is extended to the local spin density approximation (LSDA). Then

various forms of the generalized gradient approximation (GGA), LDA+U, and hybrid

methods have been proposed so far. However, the problem occurs when the result of the

ground state theory DFT is compared with experiments. These approximate exchange-

correlation interactions have several arbitrary parameters, which are chosen so as to fit

the results to the experiments. For example, the parameter U is determined so as to fit

to the experimental band gap. The hybrid models combine the LDA that underestimates

the band gap and the Hartree-Fock approximation that overestimates the band gap to fit

to the experimental band gap. Then the virial ratio, which should be exactly equal to −2

for accurate calculation, becomes far off the ideal value. We have developed TOMBO to

determine absolute values of energies around Fermi level since 20 years ago, and adopted
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the GW approximation as a one accurate method. The characteristics of TOMBO is not

to pseudopotentials but to describe all electrons by means of a combination of atomic

orbitals (AOs) and plane waves (PWs). Therefore, it is possible to determine absolute

energies, and, eventually by using the GW approximation, not only the ionization poten-

tial, electron affinity and energy gap, but also all excitation spectra at once in a single

calculation. TOMBO can accurately describe the core electron states, and therefore we

have succeeded in an accurate determination of the hyperfine structure constant. Using

the similar advantage of the method, we have also succeeded in a series of the simula-

tions of foreign atom insertion into fullerenes, and it is our pleasure that this investigation

could lead to a significant information to experimentalists. And in the TDDFT electron

excited-state dynamics simulation, we have clarified the elementary process of electron

transfer in very short time, which is very hard to observe experimentally.

Recent progress (under development) is the implementation of electron conductivity

by transforming plane waves, which is capable to describe continuum states, to localized

Wanner functions as well as originally localized atomic orbitals, the calculation of the

coefficient of the van der Waals interaction by calculating polarization of atoms accu-

rately, the thermal conductivity calculation and the design of thermoelectric devices by

the evaluation of the 3rd and 4th order derivative of the total energy with respect to the

atomic coordinates, precise calculation of the NMR chemical shift, and so on.

In first-principles calculations, their computational amount is always a serious prob-

lem. Even supercomputer does not have infinite memory, and has only limited speed of

computation. In recent years, the CPU clock speed has not increased from 2-3 GHz, the

tips became extremely complicated due to downsizing to several tens of nano meter scale,

and every machine has four-layer structure composed of core, CPU, node, and system.

Automatic vectorization and parallelization of Fortran programs supported 20 years

ago are no more expected in general, and, in order to speed up the program, it became

inevitable for our scientists to make the program parallelized by using MPI. In TOMBO,

we have achieved MPI parallelization since 10 years ago, although it is not easy to

distribute memory in the DFT calculation. However, in GW calculation, the parallel

efficiency is quite high, and, for some target systems, GW calculation can be performed

within the same wall clock time period needed to the DFT calculation. In what follows,

we will explain the detailed algorithm and characteristics of TOMBO.

Since the development of TOMBO code is still under progress, we would appreciate

it very much if you could give us your opinions and comments of TOMBO. We also

appreciate your questions of using TOMBO. We hope that TOMBO will be used in

various applications in the future. With your help, we would like to work on further

improvements and implementations of new functions in TOMBO.
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1 Preface

Density functional theory (DFT)[1] and its local density approximation (LDA)[2] have

been used in great many electronic structure calculations and first-principles molecular

dynamics simulations. There are many approahes in the electronic structure calculations

within the local density approximation in density functional theory.

Among them, the pseudopotential approach combined with plane wave (PW) expan-

sions has been applied to the ab-initio molecular dynamics (MD) simulations with rea-

sonably high accuracy. However, it is difficult to treat phenomena (hyperfine interaction,

XPS, Xanes, etc.) related to core electrons by this method. One problem in generating

good pseudo potentials is related to the fact that the core contribution to the exchange-

correlation potential is not simply an additive quantity. Moreover, it is not easy to create

efficient pseudopotentials, which require only small number of plane waves. For example,

first-row elements from B to F have very localized 2p valence orbitals and transition-

metal elements have also very localized 3d valence orbitals in order to screen the strong

Coulomb potential of the ions. This spatial locality of 2p and 3d orbitals is caused from

the fact that there is no inner 1p and 2d orbitals to which the 2p and 3d orbitals are

orthogonal in radial. Furthermore, it is not easy to treat ionization process of hydrogen

atoms by using a pseudopotential approach.

On the other hand, linear combination of atomic orbitals (LCAO) approaches can

enable us to treat all electrons. However, these methods have an intrinsic problem of

incomplete basis set, and therefore there is a problem in applying them in perturbation

theory or spectral expansion, which requires a description in the complete Hilbert space.

It is also difficult to consider a negative affinity problem by these methods. Related but

slightly different problem inherent to these methods is a basis set superposition error

(BSSE). There is also some trouble in the Gaussian basis method to describe cusp in the

wave-funcion at the nuclear position.

The methods using muffin-tin approximation such as APW and KKR are also all-

electron methods but powerful dense periodic systems only. They cannot be easily applied

to the systems with surfaces or vacuum region.

In these respects, it is highly desirable to develop new method, which combines the

PW expansion technique with the LCAO technique to remove pseudopotentials in the

PW expansion methods and to make the basis set complete in the LCAO methods.

This is the main idea to introduce the all-electron mixed basis approach. TOMBO is

the program package using this approach. Therefore, TOMBO is the all-electron first-

principles method, which can be applicable to both isolated and periodic systems with

complete basis set. It is not the overcomplete basis set because only limited number of

PWs is used in the computation.

The powerfulness of TOMBO is not only based on these features but also based on
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the fact that it enables us to perform the state-of-the-art calculations such as GW ap-

proximation and Bether–Salpeter equation. Using these methods, TOMBO can treat

the problems related to electron correlations, electronic structure around the band gap,

excitation spectra, and so forth.

The “mixed-basis approach” indicates the method using both plane waves and Bloch

sums made of atomic orbitals as the basis set. Historically, Louie, Ho and Cohen intro-

duced Gaussian atomic orbitals in the pseudopotential PW approach to treat transition

metal crystals with relatively small number of PWs [3]. Concerning the mixed-basis

approach, Ho et al. presented a formulation of the force acting on nuclei [4, 5]. It in-

cludes Pulay force. However, this was not the all-electron calculation. It is a simple

idea to extend this approach to the all-electron calculations. Instead of using Gaussian-

type orbitals, TOMBO uses numerical AOs, which makes possible to describe the cor-

rect cusp behavior in the all-electron calculation. TOMBO confines all AOs inside the

non-overlapping atomic spheres. This makes unnecessary to compute very complicated

overlap integrals between AOs centered at adjacent atoms, and simultaneously reduce

the problem of obercompleteness, because the confined AOs are clearly more localized

than the original AOs and have less overlap with PWs.

To do the first-principles molecular dynamics simulation, we use Born–Oppenheimer

(BO)’s adiabatic approximation by assuming nuclear mass is much larger than the elec-

tron mass. Under this assumption, for the force exerting on atoms, we have to calculate

the variational force due to the fact that AOs depend explicitly on the atomic positions,

in addition to the usual Hellmann–Feynman force. In the force calculation, we use the

same method introduced by Ho et al.[4, 5].

The all-electron mixed basis approach has the following advantages:

(1) The number of basis functions can be significantly reduced. For example, for carbon

systems, first-principles MD can be performed with 7 Ry cutoff energy of PWs. In

contrast, standard pseudopotential approaches requires 40 Ry cutoff energy of PWs.

(2) In Hamiltonian matrix elements, it is not necessary to store PW-PW part because

it is given simply by the Fourier components V (G − G′).

(3) It is possible to accurately treat core states because we determine AOs by using

Herman–Skillman code with logarithmic radial mesh.

(4) There is no complexity to generate and treat pseudoptentials. There is also no

problem of transferability.

(5) The overlap between AOs and PWs is calculated accurately by first performing

angular integral analytically and then performing radial integral of spherical Bessel

functions numerically in logarithmic radial mesh.
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(6) Because AOs are confined inside non-overlapping atomic spheres, there is no BSSE

problem, and it is not necessary to calculate overlap integrals between AOs cen-

tered at different atoms, which might produce unnecessary computational errors.

Simultaneously, this reduces the overcompleteness problem.

In Kawazoe’s Lab. in Inst. Mater. Res. (IMR), Tohoku Univ., Maruyama (now Adv.

Indust. Sci. Tech. (AIST), Nagoya) and Ohno (now Yokohama Nat. Univ. (YNU), Yoko-

hama) developed all-electron mixed basis program using numerical AOs and succeeded in

a first-principles MD simulation both for spin-unpolarized systems and for spin-polarized

systems. A part of this work is written in the Dr. thesis of Maruyama. Then Ohno per-

formed first-princioles MD simulations of foreign atom insertion into fullerene [8–10], and

implemented diamagnetic susceptibility of semiconductor crystals with semi-relativistic

corrections in collaboration with Louie at Carifornia, Berkeley. Ishii implemented one-

shot GW [12–17], Morisato(now Accerlys K.K.) improved accuracy of calculation and

performed several calculations including core states, Farajian performed first-principles

MD simulations of alkaline atom insertion to nanotube[18], Shiga performed calcula-

tions of transition metal clusters. TDDFT electron excited states dynamics simulations

were first performed at IMR by Wu (now Tsinghua Univ., Beijing), and later at YNU

by Sawada and Kodama [19–25]. Then, at YNU, Furuya, Noguchi (now Inst. Solid

State Phys. (ISSP), Univ. of Tokyo), Nagaoka performed dielectric functions of TTTA

crystal and CdSe clusters [26], and Iwata performed GW calculations of semiconductor

crystals[27].

Simultaneously, at IMR, Sluiter (now Delft Univ. of Tech.) completely rewrite the LDA

part of the program with Fortran90 and parallelized with hybrid MPI and OpenMP, and

completed Ver. 1 of TOhoku Mixed Basis Orbital（TOMBO). [28–30]. Adachi (Hitachi

Solutions East Japan, Ltd.), Sahara (now Nat. Inst. Mater. Sci. (NIMS)) tried to include

GGA and extend it to be applicable to crystals. Bae performed calculations of transition

metal clusters[32–34], Nishimatsu calculate XPS spectra of Si crystal[35], and Bahramy

et al. successfully applied this program to hyperfine constants [36]. More recently,

Sluiter and Sahara developed Ver. 2 of TOMBO, which can perform TDDFT dynamics

simulations with semi-relativistic corrections. Some of these results were summarized

and reviewed by Kawazoe et al. in a book[37].

More recently, Noguchi parallelized the original code having LDA, LSDA, one-shot GW

approximation, and Bethe–Salpeter equation [38–40] with MPI and openMP, and per-

formed the calculation of the double ionization spectra by using the T -matrix method[41–

46]，the on-site Coulomb energy U of molecular Mott insulator[47], the Moller Plesset

2nd order calculation, Auger spectra[48]，and phtoabsorpion spectra[49, 50]. In YNU,

Tadokoro implemented the Hartree-Fock calculation, and Kuwahara implemented the

self-consitent GW calculation (with and without vertex correction) in TOMBO.

What we explain below is the detailed algorithms used in this purely original all-
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electron mixed basis program TOMBO. It uses numerical atomic orbitals (AOs) in ad-

dition to plane waves (PWs). This approach can describe both spatially localized to

extended orbitals. TOMBO can calculate the electronic states from isolated clusters to

periodic crystals with relatively small number of basis functions.

2 Survey of All-Electron Mixed Basis Approach

2.1 DFT and LDA

Under density functional theory (DFT)[1], it is formally possible to write the total

energy E of arbitrary systems composed of electrons and nuclei as a sum of a universal

functional F [ρ(r)] of only the total electron charge density distribution ρ(r) and the

external energy Eext[ρ(r)] =
∫

v(r)ρ(r)dr due to the external potential v(r), which is

the Coulomb potential caused by the nuclear point charges and independent of ρ(r). If

we subtract from F [ρ(r)] the classical electrostatic energy between electrons, which is

called the Hartree energy and is simply given by

EH [ρ(r)] =
e2

4πε0

∫
drdr′ρ(r)ρ(r′)

|r − r′|
, (1)

the rest is called the exchange-correlation energy Exc[ρ(r)], which expresses the exchange

and correlation parts of the electron total energy. Therefore total energy E is composed

of three parts, the Hartree energy, the exchange-correlation energy, and the external

energy, as follows: E[ρ(r)] = EH [ρ(r)] + Exc[ρ(r)] + Eext[ρ(r)]. The important point is

that this total energy E[ρ(r)] of the system is a universal functional of only ρ(r), and

E[ρ(r)] has a minimum value when ρ is the true electron charge density distribution at

the electronic ground state. This last statement comes from the variational principle in

standard quantum mechanics.

It is natural to write the electron charge density distribution ρ(r) as a sum of the

absolute square of effective one-electron wave functions over all occupied states:

ρ(r) =
∑
ν

|φν(r)|2. (2)

These effective one-electron wave functions should be normalized as∫
|φν(r)|2dr = 1. (3)

Then, the kinetic energy can be at least approximately written as

Ts[ρ(r)] = − h̄2

2m

∑
ν

∫
φ∗

ν(r)∇2φν(r)dr. (4)
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Now, by taking the functional derivative of the total energy E[ρ(r)] with respect to the

complex conjugate of the effective one-electron wave function, φ∗
ν(r), under the constraint

of the norm conservation (3), we will have(
− h̄2

2m
∇2 + VH [ρ(r)] + Vxc[ρ(r)] + Vext

)
φν(r) = ενφν(r). (5)

Here εν is the Lagrange multiplier introduced by guaranteeing the norm conservation.

The second and third terms inside the bracket in the l.h.s. are the Hartree potential

given by

VH [ρ(r)] =
e2

4πε0

∫ ρ(r′)

|r − r′|
dr′, (6)

and the exchange-correlation potential Vext[ρ(r′)] defined as a functional derivative with

respect to ρ(r′) as

Vext[ρ(r′)] =
δEext[ρ(r)]

δρ(r′)
. (7)

The problem here is that we do not know the form of Vext[ρ(r′)]. Equation (5) is called

the Kohn–Sham equation and its solution φν(r) is called the Kohn–Sham wave function.

In a homogeneous electron gas system, where the nuclear point charges are replaced by

a homogeneous positive background charge, the electron charge density ρ(r) becomes just

a constant ρ everywhere, so that the universal functional F [ρ(ρ)] of the spatial function

ρ(r) becomes just a function F (ρ) of a value ρ. Using a very accurate quantum Monte

Carlo simulation [53], one may precisely determine the total energy of the electron gas

system at the ground state as a function of the homogeneous electron density ρ, which is

the negative of the homogeneous positive background charge density due to the charge

neutrality of the whole system. That is, we know the explicit form of the function

F (ρ) in the homogeneous electron gas system. If we subtract the classical electrostatic

energy between electrons (the Hartree energy) from this F (ρ), we identify the exchange-

correlation energy Exc(ρ). Then the exchange-correlation potential Vxc(ρ) is given by a

simple derivative of Exc(ρ) with respect to ρ.

Within the local density approximation (LDA)[2], the last exchange-correlation poten-

tial Vxc(r) at point r becomes simply a universal function (not a functional) of the total

electron charge density ρ = ρ(r) at point r. In this approximation, it is readily known

that Vxc(r) = Vxc(ρ) is given by the exchange-correlation potential of the electron gas

system having the same electron density ρ everywhere in the system. There are several

interpolation formulae proposed so far. In TOMOB, Perdew–Zunger’s formula[52] is used

as a default setting.

Therefore, once the total electron density distribution ρ(r) at point r is known, the

exchange-correlation potential at this point can be determined uniquely. This is a very
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simple idea, which makes all the calculation scheme very tractable. Using this LDA, we

can solve this Kohn–Sham equation self-consistently.

2.2 Atomic Orbitals and Non-Overlapping Spheres

For an isolated atom, it is possible to solves the Kohn–Sham equation very rigorously,

because of the system has a spherical symmetry. In this case, the Kohn-Sham wave

function is expressed as a product of radial function Rjnl(r) and spherical harmonics

Ylm(r̂) as

φAO
jnlm(r) = Ylm(r̂)Rjnl(r). (8)

Here, j, n, l, and m are atomic species, principal quantum number, angular momentum

quantum number, and magnetic quantum number. (TOMBO uses cubic harmonics in-

stead of spherical harmonics, and all integrals involving cubic harmonics are performed

analytically.) We can solve numerically the one-dimensional differential equation in ra-

dial direction for Rjnl(r). The atomic orbitals (AOs) used in our mixed basis code are

generated in this way. We use the Herman–Skillman code [51] modified to use logarith-

mic radial mesh by Akira Hasegawa. The number of mesh is set at 621 in TOMBO.

The radial function Rjnl(r) is defined as B or Bs in the code. Bs is the function having

the same radial factors
√

4π (S-orbital), r
√

4π/
√

3 (P-orbital), r2
√

4π/
√

15 (D-orbital),

r3
√

4π/
√

105 (F-orbital) as in the Herman–Skillman code, while B is defined without

these factors to use the ordinary normalization in the xyz coordinates.

Although the core AOs are usually well localized and have no overlap with different AOs

centered at adjacent atoms. For the valence AOs, however, they overlap with neighboring

atoms. In order to restrict them inside the non-overlapping atomic sphere of cutoff radius

(rct), we subtract from the original AO a smooth function (a simple polynomial function)

which satisfies matching condition, i.e., which has the same value and the same derivative

at rct (Fig.1). This smooth function inside the atomic sphere smoothly connects to the

original AO outside the atomic sphere. Thus, this overall smooth function can be well

described by PWs. This technique has two merits: One is that we can avoid complicated

calculation of overlap integrals between different atoms, and the other is that we can

reduce the overcompleteness problem, because the subtracted AOs are more localized

than the original AOs.

2.3 Mixed Basis Formulation

In the mixed basis code, the Kohn–Sham wave function is expressed as a linear com-

bination of plane waves (PWs) and atomic orbitals (AOs) as follows:

ψν(r) =
1√
Ω

∑
G

cPW
ν (G)eiG·r +

∑
j

∑
nlm

cAO
ν (jnlm)φAO

jnlm(r − Rj) ≡
∑
ξ

cν,ξfξ(r) (9)
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Fig. 1: Subtraction of valence atomic orbitals (AOs). By subtracting a simple polynomial

smooth function having the same value and the same derivative at the radius rc, we can

define new AOs that has finite values only inside the atomic sphere. This polynomial

connects smoothly to the original AO, and can be expressed by a linear combination of

PWs.

Here Ω is the volume of the unit cell (om in the code), c is the expansion coefficients

(cr,ci,dr9,di9,... in the code), φAO
nlm(r) is the AOs defined in (8).

We divide the total electron charge density distribution ρ(r) into two parts: one is the

spherically symmetric part (ro, roT) defined inside each non-overlapping atomic sphere,

and the rest is the global part defined in the whole unit cell. The first one is mainly

made of AOs and has only nonzero values inside the non-overlapping atomic spheres.

The effective potential is also divided in a similar way (Fig.2). Thus it becomes possible

Fig. 2: Radial function Rnl(r) of an atomic orbital (AO), the spherically symmetric

charge density ρsph(r), and the spherically symmetric effective potential V sph(r) defined

inside non-overlapping atomid sphere.

to perform very accurate calculations both for isolated systems and periodic systems in

the same way.

The semi-relativistic correction (Darwin and mass-velocity terms) can be included in

9



the calculation if the input parameter irelativistic = 1 is set in INPUT.inp.

Since the basis functions fξ(r) are not orthogonal each other, the eigenvalue εν is

obtained by solving the following generalized eigenvalue problem:∑
ξ′

Hξξ′cν,ξ′ = εν

∑
ξ′

Sξξ′cν,ξ′ , (10)

where Hξξ′ = 〈fξ|H|fξ′〉 and Sξξ′ = 〈fξ|fξ′〉 are, respectively, the Hamiltonian and overlap

matrix elements between the ξ’th and ξ′’th basis functions. Here, if we introduce the

column vector

Ψν ≡



cν,1

cν,2
...

cν,ξ
...

Cν,Nbs


, (11)

(Nbs is the number of basis functions (nbs in the code)), Eq.(10)can be rewritten as

follows:

HΨν = ενSΨν . (12)

This generalized eigenvalue problem is transformed to the usual eigenvalue problem by

using Choleski decomposition. The overlap matrix S is expressed as a product of a lower

triangular matrix T and its Hermitian conjugate T †:

S = TT †. (13)

Then, Eq. (12) becomes

H ′Φν = ενΦν , (14)

with the transformed Hamiltonian

H ′ = T−1HT †−1

, (15)

(H ′ is calculated from H and T−1), and the transformed eigenvectors are give by

Φν = T †Ψν . (16)

The resulting ordinary eigenvalue problem can be solved by the standard library program

using the Hausholder methed, or the steepest-descent method as

Φν(t + ∆t) = Φν(t) − (T−1H(t)Ψν(t) − εν(t)Φν(t))µ
−1∆t +

∑
µ

ΛνξΦξ(t + ∆t), (17)

εν(t) = Φ†
ν(t)T

−1H(t)Ψν(t), (18)
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where the matrix Λ is the Lagrange multiplier, and determined so as to orthogonalize

the eigenvectors Ψν(t + ∆t),(ν = 1, 2, ...). However, instead of determining Lagrange

multiplier, standard Gram–Schmidt orthogonalization is used in the code. In Eq.(17),

parameter µ describes the difficulty of changing the electronic states toward the self-

consistent solution. If we adopt the SD method (18), it is not necessary to evaluate H ′

given in (15). Here, all the quantities H, εν , Ψν , and φν depend on the fictitious time

step t. The Hamiltonian at (fictitious) time t + ∆t is determined by the total charge

density at the time, which was constructed by using the state vector at time t. Figure3

describes the flowchart of this algorithm. The global subroutine names called from the

main program (mdmain.f) are written in the right hand side.

In the program, the total number of atomic orbitals is nao, the maximum number of

the number of atomic orbitals of different atomic species is kao. The maximum number of

the integer indices of reciprocal lattice vectors G for PWs is nod, and the corresponding

number of PWs is nw. nw is set automatically by setting nod or Ecutoff, which is the

cutoff energy of PWs, corresponding the maximum kinetic energy of PWs.

As the other important parameters used in the code, noc is the number of occupied

states, nol is the number of levels (states), and nStep is the number of steps in the MD

simulation, iSblp is the maximum number of self-consistent field (SCF) iterations, and

smixSCF is the mixing rate of the previous charge density in the SCF loop. dTime

is the time step in units of femto second (fs). dteq is the fictitious time used in the

Steepest-Descent method ∆t/µ.

2.4 All-Electron Charge Density and Potential

In the all-electron mixed basis approach, all-electron charge density ρ(r) is made of

three contributions: PW-PW, AO-PW,and AO-AO.

ρ(r) = ρPW−PW(r) +
∑
j

ρAO−PW
j (r) +

∑
j

ρAO−AO
j (r) (19)

These contributions are given, respectively, as

ρPW−PW(r) =
2

Ω

occ∑
ν

∑
G

∑
G′

cPW ∗
ν (G′)cPW

ν (G)ei(G−G′
)·r,

ρAO−PW
j (r) =

2√
Ω

occ∑
ν

∑
nlm

∑
G

cAO ∗
ν (jnlm)cPW

ν (G)φjnlm(r − Rj)e
iG·r + c.c., (20)

ρAO−AO
j (r) = 2

occ∑
ν

∑
n′l′m′

∑
nlm

cAO ∗
ν (jn′l′m′)cAO

ν (jnlm), φjn′l′m′(r − Rj)φjnlm(r − Rj). (21)

Here the prefactor 2 denotes the spin duplicity, and
∑occ

ν means the sum over all occupied

states. The first PW-PW contribution can be conveniently treated in Fourier space. The
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subroutine “LDAxcPotential”

subroutine “CalcSCF”

subroutine “CalcSCF”

subroutine “ChargeSCF”

subroutine “ChargeSCF”

subroutine “Force”

subroutine “dynamc”

Set initial atomic positions

?
Assume initial charge density

?
Initialize coefficients Cλ

i

?
Calculate the KS potential

?
Calculate matrix elements

?
Update Cλ

i according to
matrix diagonalization or
steepest-descent method

?
Calculate charge density

?
Mix the charge density with

that of the previous step

?

?
Calculate charge density

?
Mix the charge density with

that of the previous step

?

»»»»»»»»»

XXXXXXXXX

XXXXXXXXX

»»»»»»»»»If |ρout − ρin| < ϵ Check self-consistency
NO¾

YES?
Calculate forces on atoms

?
Update atomic positions

-

Fig. 3: Flowchart of the first-principles molecular dynamics using matrix diagonalization,

steepest-descent (SD), or conjugate-gradient (CG) methods (global subroutine names are

written in the right hand side). The convergence of the electronic states is checked by

the difference of the total energy between the present and previous iteration steps. If

convergence is achieved, the atomic positions are updated by using the calculated force.
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rest two AO-related contributions are confined only inside the non-overlapping atomic

spheres, and can be written together as

ρAO
j (r) = ρAO−PW

j (r) + ρAO−AO
j (r). (22)

This can be divided into two parts: one is spherical symmetric part and the other is

asymmetric part. The former is written as the sum of σj(|r−Rj|), which is the spherical

average of ρAO
j (r) given by

σj(|r − Rj|) =
1

4π

∫
ρAO

j (r)dΩj, (23)

where Ωj is the solid angle around the jth atom. Each σj(r) is stored as a 1D function

of radius r (ro, roT in the code) similar to the radial function Rjnl(r) of AOs. The other

asymmetric term ρasym
j (r) is given by subtracting this symmetric part σj(|r −Rj|) from

the total AO-related charge density ρAO
j (r):

ρasym
j (r) = ρAO

j (r) − σj(|r − Rj|). (24)

This part is added to ρPW−PW(r) and treated as ρrest(r).

ρrest(r) = ρPW−PW(r) +
∑
j

ρasym
j (r). (25)

These AO-related charge densities are calculated in the subroutine radial Charge (iAsym=0)

or radial Charge2 (iAsym=1). The asymmetric part is generally negligible, but if neces-

sary can be taken into account by setting the option parameter iAsym = 1 in INPUT.inp.

Thus the total charge density is written as

ρ(r) = ρrest(r) +
∑
j

σj(|r − Rj|), (26)

where ρrest(r) is the same as ρPW−PW(r) when iAsym = 0.

The treatment of ignoring asymmetric part of the AO-related charge density is guar-

anteed as a good approximation, and usually iAsym is set zero. First of all, this approx-

imation keeps the total charge neutrality because the integrated value of the asymmetric

part is zero. Next, since σj(r) is restricted inside non-overlapping atomic spheres, the

asymmetric part in this region is expected to be very small. However, for example, when

one wants to treat core states accurately, one has to treat the asymmetric part as well.

To treat asymmetric part with enough accuracy, it is required to set large enough

“nog” (for example nog = 30) in INPUT.inp and increase the number of mesh (“mesh”)

discretizing the unit cell. This can be done by setting, for example, mesh = 128 in

COORDINATES.inp. (Note that the parameter “nog”, which is usually used in GW or

Hartree-Fock calculation, is also used for the treatment of the asymmetric AO-related
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charge density.) The discretized unit cell by mesh×mesh×mesh is called the global mesh

space in contrast to the spherically symmetric space inside the non-overlapping atomic

sphere. The global mesh space can be often Fourier transformed to the reciprocal lattice

space by using the fast Fourier transformation (FFT). The total charge density defined

by Eq.(19) or Eq.(26) is calculated in either in reciprocal lattice space or inside the

non-overlapping atomic sphere in logarithmic radial mesh.

One the total electron density is evaluated in the global mesh space and in the ra-

dial mesh inside atomic sphere, the exchange-correlation potential in LDA can be cal-

culated. That is, the exchange-correlation potential in the global mesh space µxc(r)

and its spherically symmetric part on the radial mesh inside atomic sphere are obtained

straightforwardly. The latter spherically symmetric part is then truncated inside the

non-overlapping atomic sphere to form a confined function, which goes smoothly to zero

at the radius of atomic sphere, rct. It is stored as the truncated spherical exchange-

correlation potential, µxc
j (|r − Rj|). (This truncation is done by subtracting smooth

quadratic function satisfying the matching condition at rct in a similar way to that used

to confine AOs inside rct described in Fig.1.) On the other hand, the former global mesh

part µxc(r) is subtracted by this truncated spherical part µxc
j (|r − Rj|). The resulting

“rest part”

µxc rest(r) = µxc(r) −
∑
j

µxc
j (|r − Rj|). (27)

is a smooth function without cuspidal behavior in the global mesh space. Obviously, the

total exchange-correlation potential is given by the sum of the truncated spherical part

and the rest global part. The important point in this procedure is that the rest global

part is smooth enough and can be easily Fourier transformed into the reciprocal lattice

space by using the FFT. This Fourier transformed rest part µ̄xc(G) together with the 1D

Fourier transformation of the truncated spherical part in radial direction µ̄xc rest(G) gives

the total exchange-correlation potential in the reciprocal lattice space, which is used as

the exchange-correlation part of the PW-PW potential matrix elements.

In this way, the potential matrix elements sandwiched by PWs is equal to the Fourier

coefficients of the total potential V (r). So we need to calculate other contributions to

the total potential. Fourier coefficients of the Coulomb potential from nucleus charge

V̄ nuc(G) is given by

V̄ nuc = −4π

Ω

∑
j

eiG·Ri
Zj

G2
. (28)

Fourier coefficients of the Hartree potential V̄ H(G) can be readily calculated by using

ρ̄(G) as

V̄ H(G) = 4π
ρ̄(G)

G2
. (29)
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The way of determining Fourier coefficients of the exchange-correlation potential µ̄xc(G)

was described above. THus the Fourier coefficients of the total potential V̄ (G) is ex-

pressed as a sum of the three terms: V̄ nuc(G), V̄ H(G), and µ̄xc(G).

2.5 AO-Related Matrix Elements

On the other hand, we need to evaluate the AO-related matrix elements (PW-AO と
AO-AO). We have to provide potential V (r) inside atomic spheres separately for these

matrix elements. This is because AOs are strongly localized and it is extremely difficult

to express its potential in the global mesh space. Here, we assume that the potential V (r)

used for the AO-related matrix elements is spherical symmetric inside non-overlapping

atomic spheres. It is, however, possible to introduce asymmetric potential inside the non-

overlapping atomic spheres by setting iAsym = 1. Then the asymmetric contribution to

the AO-related matrix elements is evaluated by using 1D Fourier transformations in radial

direction. However, the result becomes accurate only when one uses enough large nog

and mesh.

In usual case, again one can ignore this asymmetric contribution, because it is expected

that all AOs have relatively large amplitudes in the core region where the self-consistent

potential is almost spherically symmetric. Note that this approximation is completely

different from the idea of the muffin-tin approximation, because, in our case, the asym-

metric part still exists in the potential for PWs, which spans the whole unit cell even

inside the non-overlapping atomic spheres.

Hereafter, let us consider spherical potential around each nucleus Vj(rj). Here we put

rj = |r − Rj|. First, consider the Hartree potential made by the AO-related spherically

symmetric charge σj(rj) centered at Rj. This potential is easily calculated as the 1D

integration in radial direction of the Poisson equation as follows:

vH
j (rj) =

4π

rj

∫ rj

0
σj(r)r

2dr + 4π
∫ rc

rj

σj(r)rdr. (30)

According to the Gauss theorem in electrostatics, this Hartree potential behaves as

vH
j (rj) =

Qj

rj

, for r ≥ rc, (31)

where Qj is the symmetric charge defined as

Qj = 4π
∫ rc

0
σj(r)r

2dr. (32)

On the other hand, if we define the screened charge Z∗
j as

Z∗
j = Zj − Qj, (33)
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(Zj is atomic number), the sum of the Hartree potential vH
j (rj) and nuclear Coulomb

potential −Zj/rj around Rj becomes

vH
j (rj) −

Zj

rj

= −
Z∗

j

rj

, for rj ≥ rc (34)

outside the non-overlapping atomic sphere. Because of this long tail, it is necessary to

add all the contributions from surrounding atoms. This summation should be taken

not only inside the own unit cell, but also surrounding or further apart unit cells. To

treat this accurately, we use the following Fourier decoupling method. In this method,

the simple potential form −Z∗
j /rj given by Eq.(34) connects smoothly to the quadratic

function inside the non-overlapping atomic sphere. They should have the same value and

the same derivative at the radius of the atomic sphere r = rc:

vinterpo
j (rj) =

{
Z∗

j (br2
j + d) for rj < rc,

−Z∗
j /rj for rj ≥ rc.

(35)

From the matching condition, we obtain

br2
c + d = −1/rc,

2brc = 1/r2
c . (36)

From simple calculation, we find that these conditions are identical to

b =
1

2r3
c

, d = − 3

2rc

. (37)

Thus connected potential is a smooth and analytic function over whole space and is

easily transformed into reciprocal lattice space analytically. We call this potential the

interpolated Coulomb potential and write it as vinterpo
j (rj); see Eq.(35). This interpo-

lated Coulomb potential takes the correct value of the Coulomb potential, vH
j (rj) − Zj

rj
,

everywhere outside the jth atomic sphere; It takes an incorrect value only inside the jth

atomic sphere, and its difference from the correct value is given by

V trunc
j (rj) = vH

j (rj) −
Zj

rj

− vinterpo
j (rj), (38)

which we call the truncated Coulomb potential. It has nonzero values only each atomic

sphere, and is spherically symmetric. This truncation is schematically illustrated in

Fig.4. This truncated Coulomb potential is added to the truncated spherical exchange-

correlation potential µxc
j (|r − Rj|) and stored as one-dimensional data on the radial

logarithmic mesh.

Apart from this truncated function, we have to treat separately interpolated Coulomb

potential vinterpo
j (rj). This function vinterpo

j (rj) is analytically expressed by Eq.(35) in
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Fig. 4: Truncation of AO-screened nuclear Coulomb potential using the interpolation in

terms of quadratic function.

infinite space, and therefore is able to be analytically transformed into G space. The

Fourier coefficients are explicitly given by

v̄interpo
j (G) =

4πZje
−iG·Rj

Ω

{
b

[(
3(Grc)

2 − 6
)

sin Grc + 6Grc cos Grc

]
/G5

+d sin Grc/G
3 + cos Grc/G

2

}
. (39)

This analytic Fourier coefficients are added to the rest part of the Fourier coefficients

of both the Hartree potential ρ̄rest(G) and the exchange-correlation potential µ̄xc rest(G)

to give an additional contribution to the spherical potential in the jth atomic sphere.

That is, this additional contribution to the spherical potential from the three kinds of

Fourier coefficients are expressed as:

V rest
j (rj) =

∑
G

sin Grj

Grj

eiG·Rj

[∑
k

V̄ interpo
k (G) +

4π

Ω

ρ̄rest(G)

G2
+ µ̄xc rest(G)

]
. (40)

Here we note that vinterpo
j (rj) defined by Eq.(35) is different from the first term in the

l.h.d. of Eq.(40). The latter includes all the tails of the interpolated Coulomb potential

centered at all k ̸= j atoms. This is obvious from the nature of the Fourier transformation.

Thus the total effective potential to be used in the AO-related matrix elements are

given by

Vj(rj) = V trunc
j (rj) + V rest

j (rj). (41)

All the AO-related matrix elements are calculated by using this spherical potential. The

contribution from the asymmetric part of the potential is treated separately in a large

Fourier space when iAsym = 1 is set in INPUT.inp.
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2.6 Total Energy and Force

Total energy and force are calculated as follows. First, total energy is given by Etot =

Eel+Eii, where Eel denotes the electron part and Eii denotes the Coulomb energy between

nuclei. The former Eel is the sum of the electron kinetic energy K and potential energy

W , which is given by

W =
1

2

∫ ρ(r)ρ(r′)

|r − r′|
drdr′ −

∑
j

Zj

∫ ρ(r)

|r − Rj|
dr + Exc. (42)

Here, Exc is the exchange-correlation energy. The latter Eii is given by

Eii =
1

2

∑
k ̸=j

ZjZk

|Rj − Rk|
, (43)

which is evaluated by the Ewald sum. The total energy is calculated more conveniently

with the expression

Etotal = 2
∑
ν

εν −
1

2

∫ ρ(r)ρ(r′)

|r − r′|
drdr′ + Exc −

∫
ρ(r)µxc(r)dr. (44)

Next, force is calculated as follows. Here we briefly describe the points where we have

particularly elaborated in the force calculation. Since AOs do not penetrate into adjacent

atomic spheres, we can use Gauss theorem several times to obtain

∇jE
tot = ∇j

∑
k(̸=j)

Z∗
j Z

∗
k

|Rj − Rk|
− Zj∇j

∫
ρPW−PW(r)

|r − Rj|
dr

+
∫ ρPW−PW(r)∇jρ

AO
j (r′)

|r − r′|
drdr′ +

∫
ρAO

j (r)∇jVj(|r − Rj|)dr

+
∫

µxc(r)∇jρ
AO
j (r)dr + ∇jK +

{
(∇jΨ

†
ν)HΨν + c.c.

}
. (45)

The first and second terms in Eq.(45) are the same as the Hellmann–Feynman force

appearing in the usual PW expansion. The first term is evaluated by the Ewald sum, and

the second term is evaluated in Fourier space. The third to eighth terms are all so-called

variational force, which occurs due to the dependence of AOs on the atomic positions.

The third term and a part of the fourth term comes from the Hartree potential. The

fourth term is similar to the external potential in the psuedopotential formalism. On the

other hand, the derivative of Exc with respect to Rj (sixth term) is given by the fifth

term of (45):

∇jE
xc =

∫ δExc

δρ(r)
∇jρ(r)dr =

∫
µxc(r)∇jρ

AO
j (r)dr

∼
∫

µxc(r)∇jσj(|r − Rj|)dr = iΩ
∑
G

Gµ̄xc(−G)σ̄j(G), (46)
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where ρAO
j (r) is approximated by its spherical symmetric form σj(|r−Rj|) (this is done

also in the third term). The seventh term is the derivative of the kinetic energy with

respect to Rj, in which only the cross term AO-K-PW contributes to the force. That is,

we have

∇jK = 2
occ∑
ν

∑
nlm

∑
G

cAO ∗
ν (jnlm)cPW

ν (G)∇j〈φjnlm|K|G〉 + c.c., (47)

∇j〈φjnlm|K|G〉 =

√
Ω

2
G2φ̄jnlm(G)∇j exp[iG · Rj], (48)

where φ̄jnlm(G) denotes the Fourier transform of the atomic orbital φjnlm(r). For a

similar reason, also in the fourth term, the net contribution from ρAO
j appears only from

the terms ρAO−PW
j . The last term, the eighth term, is the Pulay force representing the

derivative of the coefficients in front of the basis functions with respect to Rj. This term

is evaluated as {
(∇jΨ

†
ν)HΨν + c.c.

}
= εν

{
(∇jΨ

†
ν)Ψν + c.c.

}
= εν

{
∇j(Ψ

†
νSΨν) − Ψ†

ν(∇jS)Ψν

}
= −ενΨ

†
ν(∇jS)Ψν . (49)

Here we use the identity Ψ†
νSΨν = 1. In the last equality in Eq.(49), again, only the

overlap integrals have nonzero contribution when either (ξ ∈ AO and ξ′ ∈ PW) or

(ξ ∈ PW and ξ′ ∈ AO). This formulation about the derivative of the coefficients is the

same as the formulation given by Ho et. al.[4,5] except for the pseudopotential formalism.

In TOMBO, first-principles molecular dynamics simulation can be performed by setting

“M” in iApp in INPUT.inp. In this case, the number of dynamics steps, nStep, and dTime

= ∆t [fs] should be given also in INPUT.inp.

3 TDDFT Dynamics

According to the time-dependent density functional theory[54], TOMBO can treat the

time-dependent Kohn–Sham (TDKS) equation

i
∂

∂t
ψj(r, t) = Hq(r, t)ψj(r, t), (50)

by setting “A” in iApp in INPUT.inp Here Hq(r, t) is the electronic part of the Hamil-

tonian. Combining this time-evolution equation with the Newtonian equation of motion

for nuclei

MAR̈A = − ∂

∂RA

[Eq + V cl], (51)

we can perform semi-classical dynamics simulation within the mean-field-type Ehrenfest

theorem[55]. During one simulation, all dynamical variables change in time along one
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reaction path according to the choice of the initial atomic coordinates and inital atomic

velocities (velocities can be written parallel to the right of the coordinates in COOD-

INATES.inp). This way of simulation is called “on the fly” approach. Here Eq is the

electronic part of the total energy, and, together with the Coulomb potential between

nuclei V cl, gives the mean-field potential exerting on nuclei. In these equations, r is the

electron coordinate, MA and RA are the mass and position of the Ath nucleus. This

approach is on the fly.

The simulation is basically performed adiabatically, i.e., the atomic motion is assumed

slow enough. However, non-adiabatic simulation is possible by considering the coupling

to the atomic velocity, when the input parameter nonadiabatic = 1 is set in INPUT.inp.

Below only the algorithm of adiabatic simulation is explained, but one may refer to Ref.

[56] for non-adiabatic simulation.

It is necessary to know the exchange-correlation potential to solve Eq.(50) step by step

by means of the TDDFT. TOMBO uses a simple LDA exchange-correlation functional

that is local for both space and time. This approximation is called “adiabatic LDA”.

In order to integrate Eq.(50) step by step accurately, we use the spectral method[57], in

which wave packet ψj(r, t) at each instantaneous time is expanded in terms of eigenfunc-

tions φk(r, t) (eigenvalues are ϵk(t))

Hq(r, t)φk(r, t) = ϵk(t)φk(r, t). (52)

of the Hamiltonian at that time Hq(r, t). Wave packes are expanded as

ψj(r, t) =
∑
k

cjk(t)φk(r, t), (53)

where the coefficients cjk(t) are given by the inner product of φk(r, t) and ψj(r, t) as

cjk(t) = 〈φk(r, t)|ψj(r, t)〉. (54)

Therefore, if we set the time step ∆t smaller than the time scale where the Hamiltonian

changes, the TDKS equation can be integrated as follows:

ψj(r, t + ∆t) =
∑
k

exp[−iϵk(t)∆t]cjk(t)φk(r, t). (55)

When the Hamiltonian does not change in time, Eq.(55) is exact. Of course, electron

wave packets oscillate 100-1000 times faster than the nuclear motion, but the stability

of Eq.(55) is excellent. Typically if one set ∆t at 10−2-10−1 fs, the Hamiltonian Hq(r, t)

almost does not change, Eq.(55) becomes good approximation.

This spectral method requires that the basis functions span complete space at least

approximately, and in this sense, the all-electron mixed basis method is suitable. In

fact, the summation over the eigenstates in Eq.(55) can be restricted to low lying excited
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states only, although continuum free-electron-like states above energy zero should be also

included. The number of levels taken into account in this summation is set as nol in

INPUT.inp.

Newtonian equation of motion (51) involves forces calculated by the Coulomb force

between nuclei and the derivative of the electron total energy with respect to the nuclear

positions. These forces are calculated in the same way described in previous section.

If the electronic states is on an adiabatic surface, the dynamics using this mean-field

potential becomes the adiabatic molecular dynamics. If the wave packet ψj(r, t) is the

superposition of the eigenstates, the forces acting on nuclei becomes the average of the

forces calculated from the different eigenstates with the weight of these eigenstates in the

wave packet (mixed state). This is the problem of this mean-field approximation. This

mean-filed force becomes unphysical apart from the region where the mean-field potential

is valid.

To do the TDDFT dynamics simulation, it is necessary to first iterate the SCF loop

until self-consistency is obtained. Then the TD dynamics loop starts. Typically dTIme

= ∆t = 0.01 ∼ 0.1 [fs] should be put as well as nStep in INPUT.inp.

4 GW approximation

It is well known as “a band gap problem” that the LDA eigenvalues significantly un-

derestimates the band gap of semiconductors and insulators. To overcome this difficulty,

it is necessary to go beyond DFT, and to evaluate correctly the quasiparticle spectra

on the basis of the many-body perturbation theory. This approach has an advantage

because if one calculate the Green’s function, its poles represent the quasiparticle energy

spectrum and its residues represent a pair of product of the quasiparticle wave function

and its complex conjugate. Here, the quasiparticle energy εn,k is exactly equal to the

energy difference between the excited states |ΨN±1
n,k 〉 of the N ±1 electron system and the

ground states |ΨN
G 〉 of the N electron system:

εn,k = EN+1
n,k − EN

G , foremptystates

εn,k = EN
G − EN−1

n,k , foroccupiedstates (56)

The quasiparticle wave function ψn,k(r) is exactly equal to the single electron amplitude

at point r in the N ± 1 electron excites states |ΨN±1
n,k 〉 projected onto the N electron

ground state |ΨN
G 〉. (Strictly speaking, ψn,k(r) is the creation or annihilation operator

sandwiched by |ΨN±1
n,k 〉 and |ΨN

G 〉.) There is a rigorous proof that ρ(r) =
∑occ

n,k |ψn,k|2 is

equal to the electron density.

Recently, it has become popular to use one-shot GW approximation [?,58,59]. This is

presumably because this calculation requires the SCF loop within the LDA and sometimes

less time consuming compared to the Hartree-Fock or hybrid methods.
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If we write the quasiparticle wave function and quasiparticle energy of the nth quasi-

particle state with wave vector k and spin σ, the Green’s function is given by

G(r, r′; ω) =
∑
n,k

ψn,k(r)ψ∗
n,k(r′)

ω − εn,k − iδn,k

, (57)

where δn,k is positive infinitesimal (0+) for occupied states and negative infinitesimal

(−0+) for empty states.

In the one-shot GW approximation, the quasiparticle energy spectra are calculated in

a perturbative fashion. In this formalism, the polarization function and the self-energy

is calculated by the zero-th order Green’s function that is chosen to be the LDA Green’s

function. Therefore, we cannot obtain the quasiparticle wave functions in this formalism.

If one wants to obtain the quasiparticle wave functions, one need to use self-consitent

GW approximation, which solve the Dyson equation self-consitently. Within the random

phase approximation (RPA), the polarization function is given by

P (r, r′; ω) =
∑
n

∑
n′

∑
k

∑
k′

ψ∗
n′,k′(r)ψn,k(r)ψ∗

n,k(r′)ψn′,k′(r′)

ω − εn,k + εn′,k′ − iδn,k

[f0(εn′,k′) − f0(εn,k)].

(58)

Under Fourier transformation,

P (r, r′; ω) =
∑
q

∑
G

∑
G′

ei(q+G)·rPGG′(q, ω)e−i(q+G′
)·r′

, (59)

this becomes

PG,G′(q, ω)

=
∑
n′

∑
n

∑
k

〈n′,k|e−i(q+G)·r|n, k + q〉〈n, k + q|ei(q+G′
)·r′|n′,k〉

ω − εn,k+q + εn′,k − iδn,k+q

× [f0(εn,k+q) − f0(εn′,k)]. (60)

Here, the sum over G corresponds to the Fourier transformation of the periodic function

having the small unit cell periodicity, while the sum over q corresponds to the Fourier

transformation of the envelope function having the whole crystal periodicity.

Then, the dynamically screened Coulomb interaction W needed in the GW self-energy

is given by

WGG′(q, ω) = [ϵGG′(q, ω)]−1Ũ(q + G′), (61)

where

Ũ(q + G) =
4π

Ω

1

(q + G)2
(62)
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Fig. 5: ring diagrams contributing to the dynamically screened Coulomb interaction

WGG′(q, ω) within the RPA, which corresponds to the product of the inverse of the

dielectric function ϵGG′(q, ω) times Ũ(q + G′) as in Eq.(61).

is the Fourier transformation of Coulomb interaction, Ω is the volume of the unit cell,

and

ϵGG′(q, ω) = δGG′ − Ũ(q + G)PGG′(q, ω) (63)

is the Fourier transformation of the dielectric function. To evaluate the inverse matrix of

the dielectric function ϵGG′(q, ω) is equivalent to obtain the sum of ring diagrams given

in Fig.5.

Corresponding to the Dyson equation for the Green’s function, the quasiparticle energy

and the quasiparticle wave function satisfy(
−1

2
∇2 + Vext + VH

)
ψn,k(r) +

∫
drΣ(r, r′; εn,k)ψn,k(r′) = εn,kψn,k, (64)

where Vext is the external potential and VH is the Hartree potential given by
∫

U(r −
r′)ρ(r′)dr′ with U(r − r′) = 1/|r − r′| and the electron density ρ(r′). In Eq.(64),

Σ(r, r′; εkλ
) represents the self-energy, which is given by

Σ(r, r′; ω) = i
∫ ∞

−∞

dω′

2π
e−iηω′

G(r, r′; ω − ω′)W (r, r′; ω′) (65)

within the GW approximation. Here we put η = 0+. This self-energy is diagrammatically

expressed as Fig.6. Here, the sold line with an arrow represents the Green’s function

(57), and the wavy line represents the dynamically Coulomb interaction (61), which is

diagrammatically expressed as Fig.5. We divide this into two terms: The first term is

the exchange term

Σx(r, r′) = iU(r − r′)
∫ ∞

−∞

dω

2π
e−iηωG(r, r′;−ω)
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Fig. 6: self-energy diagram within the GW approximation. The solid line represents the

Green’s function G(r, r′; t − t′), and the wavy line represents the dynamically screened

Coulomb interaction W (r, r′; t − t′).

= iU(r − r′)
∫ ∞

−∞

dω

2π
eiηωG(r, r′; ω). (66)

Here, U(r − r′) is 1/|r − r′|. Using the relation
∫ ∫

ψ∗
n,k(r)Σx(r, r′)ψn′,k(r′)drdr′, it is

easy to derive the equation

〈ψ∗
n,k|Σx|ψn′,k〉 =

∫ ∫
ψ∗

n,k(r)Σx(r, r′)ψn′,k(r′)drdr′

= −
O∑

m,k′

∫ ∫ ψ∗
n,k(r)ψ∗

m,k′(r′)ψm,k′(r)ψn′,k(r′)

|r − r′|
drdr′

=
O∑
m

∑
q,G

〈n, k|ei(q+G)·r|m, k − q〉 4π

Ω(q + G)2
〈m, k − q|e−i(q+G)·r′|n′, k〉. (67)

Here the symbol O in the sum means that the summation is taken only over the occupied

states. On the other hand, the second term is the correlation term

Σc(r, r′; ω) = i
∫ ∞

−∞

dω′

2π
e−iηω′

G(r, r′; ω − ω′)
[
W (r, r′; ω′) − U(r − r′)

]
, (68)

and is given by

〈n, k|Σc(r, r′; ω)|n′, k〉 =
∑
m

∑
q,G,G′

〈n, k|ei(q+G)·r|m, k − q〉

×i
∫

C

dω′

2π

[
WG,G′(q, ω′) − 4π

Ω(q + G)2 δG,G′

]
ω − ω′ − εk−qν − iδk−qν

〈m, k − q|e−i(q+G′
)·r′|n′,k〉. (69)

For the intermediate states in the calculation of the exchange term, the states from

“number of core constituents” (ncc) + 1 to “umber of left levels” (noll) are used in the

code. Deep core states also contribute largely to the exchange term, so that ncc should

be set usually 0. On the other hand, for the intermediate states in the calculation of the

correlation term, the states from “number of core states” (ncs) + 1 to “number of left

levels” (noll) are used in the code. Core states do not contribute to the correlation term,

and should not be included to the calculation of the correlation term when we use the
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generalized plasmon pole (GPP) model. Therefore, ncs should be set correctly at the

number of the core states.

The program used the GPP model in order to avoid the ω′ integration in the evaluation

of the correlation term. The program can choose either one of three GPP models: (1)

Hybertsen–Louie [58], (2) von der Linden–Horsch [59], (3) Engel–Farid [60].

(1) is the method to calculate direct double summation with respect to G,G′. This

is a default in the one-shot GW approximation. (2) and (3) are the methods to utilize

the eigenvalues and eigenfunctions of either the dielectric function εGG′(q, ω = 0) or the

dielectric susceptibility χGG′(q, ω = 0) =
∑

G′′PGG′′(q, ω = 0)ε−1
GG′(q, ω = 0). (2) and

(3) do not require the double summation with respect to G,G′ but instead only the

summation with respect to plasmon pole eigenstates. npp plasmon pole eigenstates are

calculated in the code. For small system 50-100 are enough for npp. It is also possible

to use the projection operator in order to avoid the summation over all empty states.

In the one-shot GW approximation, the quasiparticle energies are calculated by

εGWA
n,k = εLDA

n,k +
∫

drdr′ψLDA∗
n,k (r)

[
Σ(r, r′; εGWA

n,k ) − µLDA
xc (r)δ(r − r′)

]
ψLDA

n,k (r′). (70)

However, since the quasiparticle energy to be solved exists inside the expression of the

self-energy, it is needed to solve this equation by linear extrapolation. This corresponds

to the so-called the renormalization, and

Zn,k =

1 −
∂Σ′

n,k(ε)

∂ε

∣∣∣∣∣
ε=εGWA

n,k


−1

(71)

gives the renormalization factor, with which Eq.(70) is solved as

εGWA
n,k = ε0

n,k + (ε0
n,k − εGWA

n,k )
∂Σ′

n,k(ε)

∂ε

∣∣∣∣∣
ε=εGWA

n,k

Zn,k (72)

ε0
n,k = εLDA

n,k −
∫

drdr′φLDA ∗
n,k (r)

[
Σ(r, r′; εLDA

n,k ) − µLDA
xc (r)δ(r − r′)

]
φLDA

n,k (r′). (73)

Each contribution together with the final result for the quasiparticle energies (before and

after the renormalization) are listed in GWA.out. This output file contains the informa-

tion of the states indicated by the parameter nband in INPUT.inp, or from “number of

core states” (ncs) + 1 to “number of left levels” (noll).

In the case of the self-consistent GW calculation (set “G” in the first character of

iApp), the procedure to solve Eq.(70) is not needed. One can also perform Hartree-

Fock calculation by skipping the calculation of the correlation part (set “H” in the first

character of iApp). Starting from the one-shot GW calculation, one can rediagonalize

the GW Hamiltonian to obtain improved result in particular to the levels close to the

vacuum level.
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Fig. 7: Diagram representing the Bethe–Salpeter equation (74).

5 Calculation of photabsorption spectra

Photoabsorption spectra is given by the imaginary part of the dielectric susceptibility

χ(q, ω) = P (q, ω)ε−1(q, ω) in the limit q → 0. The relation between the dielectric

function ε(q, ω) and the polarization function P (q, ω) is given by (63). The dielectric

susceptibility needed For the accurate calculation of the photoabsorption spectra, which

is equal to the two-particle Green’s function with a pair of closed external lines, it is

required to calculate the dielectric susceptibility beyond the RPA. To calculate it, we

have to solve the Bethe–Salpeter equation (BSE) for the two-particle Green’s function

S(1, 1′; 2, 2′) = S(r1, t1, r1′ , t1′ ; r2, t2, r2′ , t2′):

S(1, 1′; 2, 2′) = S0(1, 1
′; 2, 2′) + S0(1, 1

′; 3, 3′)Ξ(3, 3′; 4, 4′)S(4, 4′; 2, 2′). (74)

Here, S0(1, 1
′; 2, 2′) = G(1′, 2′)G(2, 1) is the 0th order two-particle Green’s function ex-

cluding the −G(1, 1′)G(2, 2′) term. We used the notation G(1, 2) = G(r1, r2; t1 − t2).

The Bethe–Salpeter equation (74) is diagrammatically expressed as Fig.7. Sold lines

are the one-particle Green’s function, circle written as S with four external lines is the

two-particle Green’s function, and square written as Ξ is the interaction kernel given by

Ξ(1, 1′; 2, 2′) =
∂Σ(1, 1′)

∂G(2, 2′)
. (75)

Substituting the Hartree term and the GW self-energy to Σ , we obtain

Ξ(1, 1′; 2, 2′) = −iδ(1, 1′)δ(2, 2′)U(1, 2) + iδ(1, 2)δ(1′, 2′)W (1, 1′). (76)

The first term represents the exchange term and the second term represents the direct

term. According to Strinati[61], we have ignored the second exchange term appearing

from the functional derivative of W with respect to G. Equation (76) is expressed as Fig.8.

The dielectric susceptibility χ(q, ω) is given by the product of −iŨ(q) and the Fourier

tranform of S(r, t, r, t; r′, t′, r′, t′) from (r − r′; t − t′) to (q, ω); see Fig.9. Then, using

the method given by Strinati[61] and the Tamm–Dancoff approximation, we transform

the Bethe–Salpeter equation to the eigenvalue problem to obtain the photoabsorption

spectra[62, 63]. The resulting photoabsorption spectra are given in PhotoAbsorption-

Spectra.out.
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Fig. 8: Irreducible electron-hole interaction Ξ (hatched square) given by Eq.(76).

Fig. 9: Dielectric susceptibility χ(q, ω) given by the product of −iŨ(q) and the Fourier

transform of S(r, t, r, t; r′, t′, r′, t′).

6 Parallel Efficiency

Here we show the parallel efficiency of the GW+ Bethe-Salpeter calculation. The com-

putational times required to the calculation of the photoabsorption spectra of Na8 cluster

on HITACHI and SGI supercomputers are shown in Fig.10 and Fig.11. In particular, the

parallel efficiency of the GWA and BSE calculations are relatively high and exceeds 90%.

It is expected that the parallel efficiency goes up for larger target systems. TOMBO is

programed for distributed memory.

7 Summary

We have explained the details of the all-electon mixed basis code, TOMBO, which is

applicable to the first-principles molecular dynamics simulation (including TDDFT) and

the GW+ Bethe-Salpeter calculation.

Many results have been obtained by using this program. So far, we have applied this

code to the calculations of the diamagnetic susceptibility of semiconductors [11], hyperfine

structure[36], magnetic nanoclusters[32–34]. We have also performed the first-principles

MD simulation of the foreign atom insertion to C60 [8–10], to nanotube [18]. GW calcu-

lations have been performed for various clusters [12–14] and semiconductor crystals[27].

The TDDFT dynamics simulations have been performed for simple chemical reactions

in the doubly excited states [19–21], the light-harvesting property of π-conjugated den-
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Fig. 10: Comparison of the computational times on HITACHI SR8000, SR11000,

SR16000.

drimer [22–25], the charge separation between Zn phthalocyanine and C60[?], hydrogen

dissociation by the Ni catalytic particle[31].

T -matrix calculations for the double excitation spectra have been performed for small

clusters and molecules [41–46], applied also to the calculation of the on-site Coulomb en-

ergy U of the TTTA radical Mott insulator[47], and the calculation of Auger spectra[48].

The photoabsorption spectra of small clusters have been calculated by using the GW+

Bethe-Salpeter approach[49, 50]. Some part of the program is now under development

and will soon come out; for example, the electronic conductivity calculation by deducing

Wannier function, and the calculation of the coefficent of the van der Waals interaction.

Because of the lack of pages, it is impossible to introduce these results. For more de-

tailed explanation of the results obtained by using TOMBO, please refer to the references

quoted above. To survey some of the basic theories behind these algorithms, one book

is available[7]. TOMBO is based on a purely original first-principles method called the

all-electron mixed basis approach, and enables very accurate calculations with relatively

small number of basis functions. To be applied to more wide area by many people, it is

important to unify the version, introduce new useful functions and interfaces, and sim-

plify the usage. We hope TOMBO will be used by many scientists and engineers in the

world and a lot of important results will be obtained by using TOMBO in various fields.
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